

BENEŠ and LÁT a.s. Tovární 463, 289 14 Poříčany

Carbon footprint calculation for 2023 (01/04/2023 - 31/03/2024)

for

Z02 plant – Poříčany Z03 plant – Sutice Z08 plant – Mimoň Z10 plant - Slaná

(Scope 1 and 2)

Processed by	Ing. Zbynek Krayzel
authorized person according to Act	Poupětova 13/1383,
No. 201/2012 Coll., on air protection	170 00 Prague 7 Holešovice
	ID number - 71519475
	phone: 602 829 112, 266 711 179
	e-mail: zbynek.krayzel@seznam.cz
Processing date	15/07/2024
Stamp and signature	

Content

1.	Ca	rbon footprint, introduction and concepts	3
2.	Int	troduction and presentation of the company	4
3.	Ва	sis for calculating carbon footprints	5
4.	Са	Iculation	8
4.	.1	Combustion of natural gas	8
4.	.2	Electricity consumption	8
4.	.3	Emissions from transport	9
4.	.4	Emissions from other technological sources	9
4.	.5	CO ₂ emissions from chemicals containing CaCO3	11
4.	.6	CO_2 emissions from the consumption of dry ice and compressed CO_2	11
4.	.7	Emissions from wastewater treatment	11
4.	.8	Refrigerant leakage emissions	12
5.	Со	nclusion	13

1. Carbon footprint, introduction and concepts

A carbon footprint is the sum of released greenhouse gases expressed in CO₂ equivalents. The carbon footprint can relate to an individual, a product or an event. However, it is most often used in connection with products and defines the sum of all greenhouse gases that were emitted during the production of the given product. Similar product characteristics serve to select the one whose production has the least impact on the environment.

This is an indicator of the environmental load, which is derived from the total ecological footprint. It is usually expressed in CO₂ equivalents. That is, not in the weight of carbon itself, but of carbon dioxide produced from it and other greenhouse gases emitted (e.g. methane, nitrous oxide, halogenated hydrocarbons), whose weight is recalculated to how much CO₂ would have the same warming effect. However, it is necessary to pay attention to the fact that sometimes the other gases are neglected in the data on the carbon footprint, which can mean a big difference (this is also a problem with the data in the following text). A term that clearly indicates their inclusion is the so-called **greenhouse footprint**.

2. Introduction and presentation of the company

The document "Calculation of the carbon footprint of BENEŠ a LÁT a.s." is a continuation of the carbon footprint calculations for individual plants of the company for the years 2020-2022, processed in 2023.

The mentioned documents also include a description of the technologies of individual plants, given that there have been no significant changes in the technology operated at any plant in the meantime, these parts of the description are omitted, and the document focuses exclusively on the calculation of carbon footprints for individual plants and for the company as a whole.

The operator has requested a carbon footprint calculation for the "financial year 2023", which is the period from 1 April 2023 to 31 March 2024.

The calculation is processed for the following plants:

Plant Z02 – Poříčany – gravity and low-pressure casting of aluminum, machine shop

Plant Z03 – Sutice – plastic molding plant

Plant Z08 – Mimoň - high-pressure aluminum casting

Plant Z10 – Slaná - zinc casting

In the tables and calculations, plant numbers will be used to indicate the plants.

Company data

Business dentification number	257 24 304
Business name	BENEŠ and LÁT as
Residence	Tovární 463, 289 14 Poříčany
Phone	+420 267 227 300
E-mail	info@benesalat.cz
Statutory representative of the	Svatopluk Runčík, director of the
business	company
A person authorized to act on behalf	Ing. František Šulc, company
of the business	ecologist

3. Basis for calculating carbon footprints

The following activities generate greenhouse gas emissions at the company:

	Plant	Z02	Z03	Z08	Z10		
Source of CO ₂	unit		Basic	energy			
electrical energy	kWh	2,763,435	790,541	1,787,982	1,652,063		
share of supply from renewable sources	%	100	100	100	100		
of which renewable	TJ/year	2,763,435	790,541	1,787,982	1,652,063		
non-renewable from it	TJ/year	0	0	0	0		
natural gas (measured by main gas meter)	m ³	362,142	49,565	317,651	58,315		
		Other energy inputs					
motor vehicles (gasoline)	I	1 195	2,795	-	396		
motor vehicles (diesel)	I	3,607	5,483	2,790	3,617		
motor vehicles (LPG)	I	1 985	1,466	-	1,328		
propane-butane for forklifts	kg	2080	1,760	2,550	0		
	CHLaS	CHLaS					
burning methane	kg	35.5	-	-	995.4		
burning oil	kg	-	-	1,900	-		
acetylene	kg	101.5	67.7	0	33.8		
dry ice	kg	11,250	0	0	0		
CO 2 compressed	kg	150	40	60	70		
refining salt Eutektal T 201 (25% CaCO $_3$)	kg	144	-	-	-		
Arsal refining salt (20% CaCO 3)	kg	-	-	1,750	-		
		Leaks of refrigerants (freons)					
	kg	0	0	0	0		
		Wastewater treatment					
wastewater treatment	m ³	3,180	742	0	1,226		

Identification of emission sources

The basic step in determining the total emissions of greenhouse gases from the company (i.e. its carbon footprint) is the identification of the main sources of these emissions within the company, or beyond its borders if they are related to its activity (see Scope 1, Scope 2 and Scope 3). In practice, this means obtaining data from various departments of the company (e.g. *facility management, procurement, environmental management,* etc.) about **the consumption** of given items in a given period (most often it is a calendar year). The problem may be that the relevant departments have information in monetary (invoice) units, not physical units. For example, fuel consumption in company vehicles is expressed in Czech crowns (CZK), not liters. In most cases, however, it is possible to convert monetary units into physical units, which are necessary for calculating the carbon footprint.

Calculation of emissions

The following step is the actual calculation of greenhouse gas emissions. In practice, it means **multiplying** the consumption/production data by the corresponding emission factors. Great care must be taken to use the correct unit and scale. If the input data is given in units other than the emission factor, it is necessary to convert it to the corresponding unit and scale. In the first phase, the calculation is performed separately for each relevant greenhouse gas (CO₂, CH₄, N₂O, HFC, PFC, SF₆ and NF₃). Subsequently, these emissions are converted according to their contribution to global climate change (GWP) into so-called equivalent emissions of carbon dioxide (CO₂ eq.).

This parameter represents the resulting unit of the company's carbon footprint. Calculation formula and calculation procedure based on specific data:

EMISSION CALCULATION FORMULA

 $ADix \times EFix = CFix$

 $CFx \times GWPx = CF CO_2 eq.$

- ADix activity data for item i and greenhouse gas x
- EFix emission factor for item i and greenhouse gas x
- CF carbon footprint (greenhouse gas emissions) for item i and greenhouse gas x
- GWPx contribution to climate change of greenhouse gas x
- CF CO₂ equiv. carbon footprint (greenhouse gas emissions) expressed in carbon dioxide equivalents

Presentation of results

To obtain aggregate results for all Scopes – emissions for individual activities and items – it is necessary **to add up** the sub-items. In the case of larger

companies that have several plants, or for multinational companies, it is necessary to perform a calculation for individual plants/countries.

These data can be presented individually and only in a subsequent step then collectively for the entire company. The unit used in summary reporting is carbon dioxide equivalents - CO_2 equiv. When it comes to repeated calculation, it is advisable to include graphs and tables affecting the development of the company's emissions in individual years. Again, it is possible to present separately the results for Scopes and plants.

4. Calculation

4.1 Combustion of natural gas

Natural gas is used to produce heat both for domestic hot water and for technology needs.

Table No.	1 ·	- Calculation	of the	carbon	footprint	: - combustio	n sources
for burnir	ıg r	atural gas					

parameter	unit	Z02	Z03	Z08	Z10
Natural gas (measured by main gas meter)	m ³	362,142	49,565	328,341	55,590
Calorific value	kJ/m ³	34,330	34,330	34,330	34,330
Heat in the fuel	TJ/year	12.432	1.702	11.272	1.908
Emission factor	t CO ₂ /TJ	55.45	55.45	55.45	55.45
Emissions of CO 2 equiv	tons/year	689.373	94.352	625.029	105.821

4.2 Electricity consumption

Electrical energy is consumed both in production and in administration. It is supplied from external sources.

Table No. 2 – Electricity consumption

parameter	unit	Z02	Z03	Z08	Z10
Total consumption	kWh	2,763,435	790,541	1,787,982	1,652,063
Share of supply from	0/ 100		100	100	100
renewable sources	70	100			
of which renewable	kWh	2,763,435	790,541	1,787,982	1,652,063
of which non-renewable	kWh	0	0	0	0

Table No. 3 – Carbon footprint calculation – according to electricity consumption

parameter	unit	Z02	Z03	Z08	Z10	
El. energy from non-	kWb	0	0	0	0	
renewable sources	N VVII	0	0	0	0	
Emissions of CO ₂ eq	tons/year	0	0	0	0	

4.3 Emissions from transport

Each of the plants operates several passenger cars on different fuels (gasoline, diesel, LPG).

Table No. 4 – emissions from transport – diesel fuel

Parameter	unit	Z02	Z03	Z08	Z10
Diesel consumption for own	liters/vear		5 / 83	2 700	3 617
passenger cars	liters/year	1,195	5,705	2,790	5,017
Emission factor of passenger	t CO ₂ /liter		0 00266		0 00266
cars	NM	0.00200	0.00200	0.00200	0.00200
Emissions of CO ₂ equiv.	tons/year	3.179	14.585	7.421	9.621

Table No. 5 - emissions from transport - petrol

Parameter	unit	Z02	Z03	Z08	Z10
Gasoline consumption for	liters/vear		2 705	0	306
own passenger cars	inter sy year	3,607	2,195	0	590
Emission factor	t CO ₂ /liter	0.00201	0 00201	0 00201	0 00201
	BA	0.00201	0.00201	0.00201	0.00201
Emissions of CO ₂ equiv.	tons/year	7.250	5.618	0	0.796

Table No. 6 – emissions from transport – LPG

Parameter	unit	Z02	Z03	Z08	Z10
Consumption of LPG for own	liters/vear		1 466	0	1 378
passenger cars	incers/year	1 985	1,400	0	1,520
Emission factor	t CO ₂ /liter	0.00166	0.00166	0.00166	0.00166
Emissions of CO ₂ equiv.	tons/year	3.295	2.434	0	2.204

Table No. 7 – emissions from transport – propane-butane

Parameter	unit	Z02	Z03	Z08	Z10
Forklifts - PB consumption	Liters/year	2,080	1,760	2,550	0
Emission factor	t CO ₂ /liter PB	0.00166	0.00166	0.00166	0.00166
Emissions of CO ₂ equiv.	tons/year	3.453	2.922	4.233	0

4.4 Emissions from other technological sources Table No. 8 – sources burning methane

Parameter	unit	Z02	Z03	Z08	Z10
Consumption of CH ₄	kg/year	35.5			995.4

emission factor	кд CO₂/kg CH₄	2.75	2.75	2.75	2.75
emission of CO ₂ equiv	kg/year	97.625			2,737.35
Emissions of CO ₂ equiv	tons/year	0.098	0	0	2.737

The combustion equation for burning methane is:

$CH_4 + 2O_2 = CO_2 + 2H_2O_2$

Which is: $16 + 2 \times 32 = 44 + 2 \times 18$ (vg/mol)

Burning 16 g of methane and 64 g of oxygen produces 44 g of CO_2 . The rest is water.

1 kg of methane produces 2.750 kg of CO₂

 Table No. 9 – sources burning oil

Parameter	unit	Z02	Z03	Z08	Z10
Amount of fuel based on	liters/vear	0	0	2 000	0
useful oils	incers/year	0	0	2,000	0
Amount of fuel based on	ka/voar			1 000	
useful oils	ky/year			1,900	
Calorific value	kJ/kg			40,000	
Amount of energy	TJ/year			0.076	
Emission factor	t CO ₂ /TJ			72.53	
Emissions of CO ₂ equiv.	tons/year	0	0	5.512	0

Table No. 10 - acetylene combustion (maintenance, welding)

Parameter	unit	Z02	Z03	Z08	Z10
acetylene consumption per year	kg/year	101.5	67.7	0	33.8
emission factor	kg CO ₂ /kg C ₂ H ₂	3.385	3.385	3.385	3.385
emission of CO 2 equiv	kg/year	343.578	229.165	0	114.413
Emissions of CO 2 equiv.	tons/year	0.344	0.229	0	0.114

The combustion equation for burning acetylene is:

$2 C_2 H_2 + 5 O_2 = 4 CO_2 + 2 H_2 O$

Which represents:

2 x 26 + 5 x 32 = 4 x 44 + 2 x 18 (vg/mol)

Burning 52 g of acetylene and 160 g of oxygen produces 176 g of CO_2 . The rest is water.

1 kg of acetylene produces 3.385 kg of CO₂

Parameter	unit	Z02	Z03	Z08	Z10
Arsal 2125	kg/year	0		1,750	
Eutectal T 201 (25% CaCO ₃)	kg/year	144		0	
Sodium carbonate content	%	25		20	
Amount of sodium carbonate	kg/year	36		350	
Amount of CO_2 from 1 kg of	ka/ka	0 / 151		0 / 151	
CaCO ₃	ку/ку	0.4131		0.4131	
Emissions of CO ₂ equiv.	t/year	0.015	0	0.145	0

4.5 CO₂ emissions from chemicals containing CaCO3 Table No. 11 – Calculation of the carbon footprint from CHLaS

4.6 CO_2 emissions from the consumption of dry ice and compressed CO_2

Dry ice and compressed CO_2 are used at the plants.

Table No. 12 - Calculation of the carbon footprint - emissions from the use of dry ice and compressed CO $_2$

Parameter	unit	Z02	Z03	Z08	Z10
dry ice	kg	11,250	0	0	0
CO ₂ compressed	kg	150	40	60	70
emission of CO ₂ equiv.	kg/year	11,400	40	60	70
Emissions of CO ₂ equiv.	tons/year	11.400	0.040	0.060	0.070

4.7 Emissions from wastewater treatment

In the Z03, Z03 and Z10 plants, local sewage treatment facilities are operated. At the Z08 plant, sewage effluent is discharged directly into the public sewer system and is not included in the carbon footprint calculation.

Table No. 13 - Calculation of the carbon footprint - emissions fromwastewater treatment

Parameter	unit	Z02	Z03	Z08	Z10
Amount of treated	m³/year	3 180	742	0	1,226
wastewater		5,100			
Degraded BOD 5	mg/liter	598.857	2,354.447	0	1773.246
Degraded amount of BOD $_5$	t/year	1.904	1.747	0	2.174
CO 2 eq emission intensity	tCO ₂ /t	255	255	0	255
	BOD 5	2.5-5	2.3-3	0	2.5-5
Tons of CO ₂	t/year	9.522	8.735	0	10.870

4.8 Refrigerant leakage emissions

The plant has several facilities containing greenhouse gases. These devices are hermetically sealed but may leak in the event of malfunctions or accidents.

Table No. 13 – Calculation of the carbon footprint from the leakage of cooling media

The plant has several facilities containing greenhouse gases. These devices are hermetically sealed but may leak in the event of malfunctions or accidents. In 2023, there were no leaks at any plant.

Para	meter	unit	Z02	Z03	Z08	Z10
HFC type	GWP	kg/year	0	0	0	0
HFC type	GWP	kg/year	0	0	0	0
Emissions of	CO2 equiv.	kg/year	0	0	0	0

5. Conclusion

In 2023, the following tons of CO_2 equiv. were produced at the company's individual plants.

<u> Table No. 14 – Grand total</u>

Parameter	unit	Z02	Z03	Z08	Z10
Natural gas	t/year	689.373	94.352	625.029	105.821
Electricity	t/year	0	0	0	0
Transport NM	t/year	3.179	14.585	7.421	9.621
Transport BA	t/year	7.25	5.618	0	0.796
LPG	t/year	3,295	2.434	0	2.204
PB	t/year	3,453	2.922	4.233	0
Methane combustion	t/year	0.098	0	0	2,737
Acetylene combustion	t/year	0.344	0.229	0	0.114
Oil combustion	t/year	0	0	5.512	0
Using compressed CO_2 and	t/year	11 /	0.04	0.06	0.07
dry ice		11.4	0.04	0.00	0.07
CHLaS with CaCO ₃	t/year	0.015	0	0.145	0
Refrigerant leaks	t/year	0	0	0	0
Wastewater treatment	t/year	9.522	8.735	0	10.87
In total	t/year	727.929	128.915	642.4	132.233
Of which					
Scope 1	t/year	727.929	128.915	642.4	132.233
Scope 2	t/year	0	0	0	0